Categories
Misc

Introducing NVIDIA Isaac Gym: End-to-End Reinforcement Learning for Robotics

Announcing a preview release of Isaac Gym – NVIDIA’s physics simulation environment for reinforcement learning research.

For several years, NVIDIA’s research teams have been working to leverage GPU technology to accelerate reinforcement learning (RL). As a result of this promising research, NVIDIA is pleased to announce a preview release of Isaac Gym – NVIDIA’s physics simulation environment for reinforcement learning research. RL-based training is now more accessible as tasks that once required thousands of CPU cores can now instead be trained using a single GPU.

A cube manipulation task trained by Isaac Gym on a single A100 and rendered in Omniverse

RL has become one of the most promising research areas in machine learning and has demonstrated great potential for solving complex problems. RL-based systems have achieved superhuman performance in very challenging tasks, ranging from classic strategy games such as Go and Chess, to real-time computer games like StarCraft and DOTA.

RL based approaches also hold promise for robotics applications, such as solving a Rubik’s Cube, or learning locomotion by imitating animals.

Isaac Gym and NVIDIA GPUs, a reinforcement learning supercomputer 

Until now, most RL robotics researchers were forced to use clusters of CPU cores for the physically accurate simulations needed to train RL algorithms. In one of the more well-known projects, the OpenAI team used almost 30,000 CPU cores (920 computers with 32 cores each) to train their robot in the Rubik’s Cube task. 

In a similar task, Learning Dexterous In-Hand Manipulation, OpenAI used a cluster of 384 systems with 6144 CPU cores, plus 8 Volta V100 GPUs and required close to 30 hours of training to achieve its best results. This in-hand cube object orientation task is a challenging dexterous manipulation task, with complex physics and dynamics, many contacts, and a high-dimensional continuous control space. 

Isaac Gym includes an example of this cube manipulation task for researchers to recreate the OpenAI experiment. The example supports training both recurrent and feed-forward neural networks, as well as domain randomization of physics properties that help with sim-to-real transfer. With Isaac Gym, researchers can achieve the same level of success as OpenAI’s supercomputer — on a single A100 GPU — in about 10 hours! 

End to End GPU RL

Isaac Gym achieves these results by leveraging NVIDIA’s PhysX GPU-accelerated simulation engine, allowing it to gather the experience data required for robotics RL.

In addition to fast physics simulations, Isaac Gym also enables observation and reward calculations to take place on the GPU, thereby avoiding significant performance bottlenecks. In particular, costly data transfers between the GPU and the CPU are eliminated.

Implemented this way, Isaac Gym enables a complete end-to-end GPU RL pipeline.

Isaac Gym

Isaac Gym provides a basic API for creating and populating a scene with robots and objects, supporting loading data from URDF and MJCF file formats.  Each environment is duplicated as many times as needed, and can be simulated simultaneously without interaction with other environments.

Isaac Gym provides a PyTorch tensor-based API to access the results of physics simulation work, allowing RL observation and reward calculations to be built using the PyTorch JIT runtime system, which dynamically compiles the python code that does these calculations into CUDA code, running on the GPU.  

Observation tensors can be used as inputs to a policy inference network, and the resulting action tensors can be directly fed back into the physics system. Rollouts of observation, reward, and action buffers can stay on the GPU for the entire learning process eliminating the need to read data back from the CPU.

This set-up permits tens of thousands of simultaneous environments on a single GPU, allowing researchers to easily run experiments locally on their desktops that previously required an entire data center.

Isaac Gym also includes a basic Proximal Policy Optimization (PPO) implementation and a straightforward RL task system, but users may substitute alternative task systems or RL algorithms as desired. Also, while the included examples use PyTorch, users should also be able to integrate with TensorFlow based RL systems with some further customization.

Some additional features of Isaac Gym include:

  • Support for a variety of environment sensors – position, velocity, force, torque, etc.
  • Runtime domain randomization of physics parameters
  • Jacobian / inverse kinematics support

Research Results    

NVIDIA’s research team has been applying Isaac Gym to a wide variety of projects. You can take a sneak-peek at some of these below, but stay tuned to https://developer.nvidia.com/blog/ for more details on these projects.   

Get Started Today

Are you a researcher or academic interested in RL for robotics applications? Please download and try Isaac Gym

Future Plans

The core functionality of Isaac Gym will be made available as part of the NVIDIA Omniverse Platform and NVIDIA’s Isaac Sim, a robotics simulation platform built on Omniverse. Until then we are making this standalone preview release available to researchers and academics to show the possibilities of end-to-end GPU-based RL and help accelerate your work in this arena.

Categories
Misc

NVIDIA Boosts Academic AI Research

To help AI research like this make the leap from academia to commercial or government deployment, NVIDIA recently announced the Applied Research Accelerator Program. The program supports applied research on NVIDIA platforms for GPU-accelerated application deployments.

To help AI research like this make the leap from academia to commercial or government deployment, NVIDIA today announced the Applied Research Accelerator Program. The program supports applied research on NVIDIA platforms for GPU-accelerated application deployments.

Categories
Misc

Chalk and Awe: Studio Crafts Creative Battle Between Stick Figures with Real-Time Rendering

It’s time to bring krisp graphics to stick figure drawings. Creative studio SoKrispyMedia, started by content creators Sam Wickert and Eric Leigh, develops short videos blended with high-quality visual effects. Since publishing one of their early works eight years ago on YouTube, Chalk Warfare 1, the team has regularly put out short films that showcase Read article >

The post Chalk and Awe: Studio Crafts Creative Battle Between Stick Figures with Real-Time Rendering appeared first on The Official NVIDIA Blog.

Categories
Misc

Big Wheels Keep on Learnin’: Einride’s AI Trucks Advance Capabilities with NVIDIA DRIVE AGX Orin

Swedish startup Einride has rejigged the big rig for highways around the world. The autonomous truck maker launched the next generation of its cab-less autonomous truck, known as the Pod, with new, advanced functionality and pricing. The AI vehicles, which will be commercially available worldwide, will be powered by the latest in high-performance, energy-efficient compute Read article >

The post Big Wheels Keep on Learnin’: Einride’s AI Trucks Advance Capabilities with NVIDIA DRIVE AGX Orin appeared first on The Official NVIDIA Blog.

Categories
Misc

NVIDIA Boosts Academic AI Research for Business Innovation

Academic researchers are developing AI to solve challenging problems with everything from agricultural robotics to autonomous flying machines. To help AI research like this make the leap from academia to commercial or government deployment, NVIDIA today announced the Applied Research Accelerator Program. The program supports applied research on NVIDIA platforms for GPU-accelerated application deployments. The Read article >

The post NVIDIA Boosts Academic AI Research for Business Innovation appeared first on The Official NVIDIA Blog.

Categories
Misc

NVIDIA Research Achieves AI Training Breakthrough Using Limited Datasets

NVIDIA Research’s latest AI model is a prodigy among generative adversarial networks. Using a fraction of the study material needed by a typical GAN, it can learn skills as complex as emulating renowned painters and recreating images of cancer tissue. By applying a breakthrough neural network training technique to the popular NVIDIA StyleGAN2 model, NVIDIA Read article >

The post NVIDIA Research Achieves AI Training Breakthrough Using Limited Datasets appeared first on The Official NVIDIA Blog.

Categories
Misc

Faster Physics: How AI and NVIDIA A100 GPUs Automate Particle Physics

What are the fundamental laws that govern our universe? How did the matter in the universe today get there? What exactly is dark matter? The questions may be eternal, but no human scientist has an eternity to answer them. Now, thanks to NVIDIA technology and cutting-edge AI, the more than 1,000 collaborators from 26 countries Read article >

The post Faster Physics: How AI and NVIDIA A100 GPUs Automate Particle Physics appeared first on The Official NVIDIA Blog.

Categories
Misc

Majority Report: Experts Talk Future of AI and Its Impact on Global Industries

AI is the largest technology force of our time, with the most potential to transform industries. It will bring new intelligence to healthcare, education, automotive, retail and finance, creating trillions of dollars in a new AI economy. As businesses look ahead to 2021 priorities, now’s a great time to look back at where the world Read article >

The post Majority Report: Experts Talk Future of AI and Its Impact on Global Industries appeared first on The Official NVIDIA Blog.

Categories
Misc

NVIDIA Chief Scientist Bill Dally to Keynote at GTC China

Bill Dally — one of the world’s foremost computer scientists and head of NVIDIA’s research efforts — will deliver the keynote address during GTC China, the latest event in the world’s premier conference series focused on AI, deep learning and high performance computing. Registration is not required to view the keynote, which will take place Read article >

The post NVIDIA Chief Scientist Bill Dally to Keynote at GTC China appeared first on The Official NVIDIA Blog.

Categories
Misc

Behind the Scenes at NeurIPS with NVIDIA and CalTech’s Anima Anandkumar

Anima Anandkumar is setting a personal record this week with seven of her team’s research papers accepted to NeurIPS 2020. The 34th annual Neural Information Processing Systems conference is taking place virtually from Dec. 6-12. The premier event on neural networks, NeurIPS draws thousands of the world’s best researchers every year. Anandkumar, NVIDIA’s director of Read article >

The post Behind the Scenes at NeurIPS with NVIDIA and CalTech’s Anima Anandkumar appeared first on The Official NVIDIA Blog.